Cargando…
Recognition of Emotional States Using Multiscale Information Analysis of High Frequency EEG Oscillations
Exploring the manifestation of emotion in electroencephalogram (EEG) signals is helpful for improving the accuracy of emotion recognition. This paper introduced the novel features based on the multiscale information analysis (MIA) of EEG signals for distinguishing emotional states in four dimensions...
Autores principales: | Gao, Zhilin, Cui, Xingran, Wan, Wang, Gu, Zhongze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515095/ https://www.ncbi.nlm.nih.gov/pubmed/33267323 http://dx.doi.org/10.3390/e21060609 |
Ejemplares similares
-
Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting
por: Wan, Wang, et al.
Publicado: (2021) -
Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device
por: Gao, Zhilin, et al.
Publicado: (2022) -
ECSMP: A dataset on emotion, cognition, sleep, and multi-model physiological signals
por: Gao, Zhilin, et al.
Publicado: (2021) -
Discrimination of emotional states from scalp- and intracranial EEG using multiscale Rényi entropy
por: Tonoyan, Yelena, et al.
Publicado: (2017) -
Are High Frequency Oscillations in Scalp EEG Related to Age?
por: Windhager, Philipp Franz, et al.
Publicado: (2022)