Cargando…
Kernel Methods for Nonlinear Connectivity Detection
In this paper, we show that the presence of nonlinear coupling between time series may be detected using kernel feature space [Formula: see text] representations while dispensing with the need to go back to solve the pre-image problem to gauge model adequacy. This is done by showing that the kerneli...
Autores principales: | Massaroppe, Lucas, Baccalá, Luiz A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515096/ https://www.ncbi.nlm.nih.gov/pubmed/33267324 http://dx.doi.org/10.3390/e21060610 |
Ejemplares similares
-
Nonlinear numerical analysis in reproducing Kernel space
por: Cui, Minggen, et al.
Publicado: (2009) -
On the statistical performance of Granger-causal connectivity estimators
por: Sameshima, Koichi, et al.
Publicado: (2015) -
Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray
por: Li, Xuehua, et al.
Publicado: (2008) -
Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel
por: Zafar, Zain Ul Abadin, et al.
Publicado: (2021) -
Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization
por: Baddoo, Peter J., et al.
Publicado: (2022)