Cargando…
An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure
Dempster–Shafer (DS) evidence theory is widely applied in multi-source data fusion technology. However, classical DS combination rule fails to deal with the situation when evidence is highly in conflict. To address this problem, a novel multi-source data fusion method is proposed in this paper. The...
Autores principales: | Wang, Zhe, Xiao, Fuyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515099/ https://www.ncbi.nlm.nih.gov/pubmed/33267325 http://dx.doi.org/10.3390/e21060611 |
Ejemplares similares
-
Conflict management based on belief function entropy in sensor fusion
por: Yuan, Kaijuan, et al.
Publicado: (2016) -
An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy
por: Liu, Zeyi, et al.
Publicado: (2019) -
A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion
por: Tang, Yongchuan, et al.
Publicado: (2017) -
Improved Base Belief Function-Based Conflict Data Fusion Approach Considering Belief Entropy in the Evidence Theory
por: Ni, Shuang, et al.
Publicado: (2020) -
An Improved Entropy-Weighted Topsis Method for Decision-Level Fusion Evaluation System of Multi-Source Data
por: Liu, Lilan, et al.
Publicado: (2022)