Cargando…
Model Selection for Non-Negative Tensor Factorization with Minimum Description Length
Non-negative tensor factorization (NTF) is a widely used multi-way analysis approach that factorizes a high-order non-negative data tensor into several non-negative factor matrices. In NTF, the non-negative rank has to be predetermined to specify the model and it greatly influences the factorized ma...
Autores principales: | Fu, Yunhui, Matsushima, Shin, Yamanishi, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515125/ https://www.ncbi.nlm.nih.gov/pubmed/33267345 http://dx.doi.org/10.3390/e21070632 |
Ejemplares similares
-
The minimum description length principle /
por: Grünwald, Peter D.
Publicado: (2007) -
Spherical Minimum Description Length
por: Herntier, Trevor, et al.
Publicado: (2018) -
Advances in minimum description length : theory and applications /
Publicado: (2005) -
Aligning Sequences by Minimum Description Length
por: Conery, JohnS
Publicado: (2008) -
Minimum Description Length Codes Are Critical
por: Cubero, Ryan John, et al.
Publicado: (2018)