Cargando…

On the Performance of Interleavers for Quantum Turbo Codes

Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting of quantum communication, achieving a performance less than 1 dB away from their corresponding hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However, interleaver desig...

Descripción completa

Detalles Bibliográficos
Autores principales: Etxezarreta Martinez, Josu, Crespo, Pedro M., Garcia-Frías, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515126/
https://www.ncbi.nlm.nih.gov/pubmed/33267346
http://dx.doi.org/10.3390/e21070633
Descripción
Sumario:Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting of quantum communication, achieving a performance less than 1 dB away from their corresponding hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However, interleaver design plays an important role in the optimization of classical turbo codes. Consequently, inspired by the widely used classical-to-quantum isomorphism, this paper studies the integration of classical interleaving design methods into the paradigm of quantum turbo coding. Simulations results demonstrate that error floors in QTCs can be lowered significantly, while decreasing memory consumption, by proper interleaving design without increasing the overall decoding complexity of the system.