Cargando…
An Entropy Formulation Based on the Generalized Liouville Fractional Derivative
This paper presents a new formula for the entropy of a distribution, that is conceived having in mind the Liouville fractional derivative. For illustrating the new concept, the proposed definition is applied to the Dow Jones Industrial Average. Moreover, the Jensen-Shannon divergence is also general...
Autores principales: | Ferreira, Rui A. C., Tenreiro Machado, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515131/ https://www.ncbi.nlm.nih.gov/pubmed/33267352 http://dx.doi.org/10.3390/e21070638 |
Ejemplares similares
-
Stability of Delay Hopfield Neural Networks with Generalized Riemann–Liouville Type Fractional Derivative
por: Agarwal, Ravi P., et al.
Publicado: (2023) -
A Review of Fractional Order Entropies
por: Lopes, António M., et al.
Publicado: (2020) -
Nonlinear analysis of a four-dimensional fractional hyper-chaotic system based on general Riemann–Liouville–Caputo fractal–fractional derivative
por: Pan, Yuhang
Publicado: (2021) -
Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors
por: Pérez, Jesús Emmanuel Solís, et al.
Publicado: (2018) -
Computational Methods for Parameter Identification in 2D Fractional System with Riemann–Liouville Derivative
por: Brociek, Rafał, et al.
Publicado: (2022)