Cargando…
Estimating Predictive Rate–Distortion Curves via Neural Variational Inference
The Predictive Rate–Distortion curve quantifies the trade-off between compressing information about the past of a stochastic process and predicting its future accurately. Existing estimation methods for this curve work by clustering finite sequences of observations or by utilizing analytically known...
Autores principales: | Hahn, Michael, Futrell, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515133/ https://www.ncbi.nlm.nih.gov/pubmed/33267354 http://dx.doi.org/10.3390/e21070640 |
Ejemplares similares
-
Introspective inference counteracts perceptual distortion
por: Mihali, Andra, et al.
Publicado: (2023) -
Mutation rate, selection, and epistasis inferred from RNA virus haplotypes via neural posterior estimation
por: Caspi, Itamar, et al.
Publicado: (2023) -
Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference
por: Steinbrener, Jan, et al.
Publicado: (2020) -
Inferring neural circuit structure from datasets of heterogeneous tuning curves
por: Arakaki, Takafumi, et al.
Publicado: (2019) -
Nucleotide Usage Biases Distort Inferences of the Species Tree
por: Borges, Rui, et al.
Publicado: (2022)