Cargando…
Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion
In the framework of statistical learning, we study the online gradient descent algorithm generated by the correntropy-induced losses in Reproducing kernel Hilbert spaces (RKHS). As a generalized correlation measurement, correntropy has been widely applied in practice, owing to its prominent merits o...
Autores principales: | Wang, Baobin, Hu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515137/ https://www.ncbi.nlm.nih.gov/pubmed/33267358 http://dx.doi.org/10.3390/e21070644 |
Ejemplares similares
-
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020) -
Adaptive Pressure Control System Based on the Maximum Correntropy Criterion
por: Flores, Thommas Kevin Sales, et al.
Publicado: (2021) -
Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
por: Huang, Hongliang, et al.
Publicado: (2022) -
Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
por: Qi, Yu, et al.
Publicado: (2014) -
Frequency domain maximum correntropy criterion spline adaptive filtering
por: Guo, Wenyan, et al.
Publicado: (2021)