Cargando…
Structure Learning of Bayesian Network Based on Adaptive Thresholding
Direct dependencies and conditional dependencies in restricted Bayesian network classifiers (BNCs) are two basic kinds of dependencies. Traditional approaches, such as filter and wrapper, have proved to be beneficial to identify non-significant dependencies one by one, whereas the high computational...
Autores principales: | Zhang, Yang, Wang, Limin, Duan, Zhiyi, Sun, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515162/ https://www.ncbi.nlm.nih.gov/pubmed/33267379 http://dx.doi.org/10.3390/e21070665 |
Ejemplares similares
-
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
por: Liu, Yang, et al.
Publicado: (2018) -
Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance
por: Wang, Limin, et al.
Publicado: (2019) -
Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation
por: Bauer, Robert, et al.
Publicado: (2015) -
Research on BOLD-fMRI Data Denoising Based on Bayesian Estimation and Adaptive Wavelet Threshold
por: Jian, Zini, et al.
Publicado: (2021) -
Stochastic margin-based structure learning of Bayesian network classifiers
por: Pernkopf, Franz, et al.
Publicado: (2013)