Cargando…
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
Although within-cluster information is commonly used in most clustering approaches, other important information such as between-cluster information is rarely considered in some cases. Hence, in this study, we propose a new novel measure of between-cluster distance in subspace, which is to maximize t...
Autores principales: | Xiong, Liyan, Wang, Cheng, Huang, Xiaohui, Zeng, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515186/ https://www.ncbi.nlm.nih.gov/pubmed/33267397 http://dx.doi.org/10.3390/e21070683 |
Ejemplares similares
-
A novel subspace outlier detection method by entropy-based clustering algorithm
por: Zuo, Zheng, et al.
Publicado: (2023) -
Regularized Multi-View Subspace Clustering for Common Modules Across Cancer Stages
por: Zhang, Enli, et al.
Publicado: (2018) -
On the Geodesic Distance in Shapes K-means Clustering
por: Gattone, Stefano Antonio, et al.
Publicado: (2018) -
Sample Entropy Combined with the K-Means Clustering Algorithm Reveals Six Functional Networks of the Brain
por: Jia, Yanbing, et al.
Publicado: (2019) -
Retracted: Artificial Intelligence-Guided Subspace Clustering Algorithm for Glioma Images
por: Healthcare Engineering, Journal of
Publicado: (2023)