Cargando…

Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere

The pillars of contemporary theoretical physics are classical mechanics, Maxwell electromagnetism, relativity, quantum mechanics, and Boltzmann–Gibbs (BG) statistical mechanics –including its connection with thermodynamics. The BG theory describes amazingly well the thermal equilibrium of a plethora...

Descripción completa

Detalles Bibliográficos
Autor principal: Tsallis, Constantino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515208/
https://www.ncbi.nlm.nih.gov/pubmed/33267410
http://dx.doi.org/10.3390/e21070696
_version_ 1783586766408646656
author Tsallis, Constantino
author_facet Tsallis, Constantino
author_sort Tsallis, Constantino
collection PubMed
description The pillars of contemporary theoretical physics are classical mechanics, Maxwell electromagnetism, relativity, quantum mechanics, and Boltzmann–Gibbs (BG) statistical mechanics –including its connection with thermodynamics. The BG theory describes amazingly well the thermal equilibrium of a plethora of so-called simple systems. However, BG statistical mechanics and its basic additive entropy [Formula: see text] started, in recent decades, to exhibit failures or inadequacies in an increasing number of complex systems. The emergence of such intriguing features became apparent in quantum systems as well, such as black holes and other area-law-like scenarios for the von Neumann entropy. In a different arena, the efficiency of the Shannon entropy—as the BG functional is currently called in engineering and communication theory—started to be perceived as not necessarily optimal in the processing of images (e.g., medical ones) and time series (e.g., economic ones). Such is the case in the presence of generic long-range space correlations, long memory, sub-exponential sensitivity to the initial conditions (hence vanishing largest Lyapunov exponents), and similar features. Finally, we witnessed, during the last two decades, an explosion of asymptotically scale-free complex networks. This wide range of important systems eventually gave support, since 1988, to the generalization of the BG theory. Nonadditive entropies generalizing the BG one and their consequences have been introduced and intensively studied worldwide. The present review focuses on these concepts and their predictions, verifications, and applications in physics and elsewhere. Some selected examples (in quantum information, high- and low-energy physics, low-dimensional nonlinear dynamical systems, earthquakes, turbulence, long-range interacting systems, and scale-free networks) illustrate successful applications. The grounding thermodynamical framework is briefly described as well.
format Online
Article
Text
id pubmed-7515208
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75152082020-11-09 Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere Tsallis, Constantino Entropy (Basel) Review The pillars of contemporary theoretical physics are classical mechanics, Maxwell electromagnetism, relativity, quantum mechanics, and Boltzmann–Gibbs (BG) statistical mechanics –including its connection with thermodynamics. The BG theory describes amazingly well the thermal equilibrium of a plethora of so-called simple systems. However, BG statistical mechanics and its basic additive entropy [Formula: see text] started, in recent decades, to exhibit failures or inadequacies in an increasing number of complex systems. The emergence of such intriguing features became apparent in quantum systems as well, such as black holes and other area-law-like scenarios for the von Neumann entropy. In a different arena, the efficiency of the Shannon entropy—as the BG functional is currently called in engineering and communication theory—started to be perceived as not necessarily optimal in the processing of images (e.g., medical ones) and time series (e.g., economic ones). Such is the case in the presence of generic long-range space correlations, long memory, sub-exponential sensitivity to the initial conditions (hence vanishing largest Lyapunov exponents), and similar features. Finally, we witnessed, during the last two decades, an explosion of asymptotically scale-free complex networks. This wide range of important systems eventually gave support, since 1988, to the generalization of the BG theory. Nonadditive entropies generalizing the BG one and their consequences have been introduced and intensively studied worldwide. The present review focuses on these concepts and their predictions, verifications, and applications in physics and elsewhere. Some selected examples (in quantum information, high- and low-energy physics, low-dimensional nonlinear dynamical systems, earthquakes, turbulence, long-range interacting systems, and scale-free networks) illustrate successful applications. The grounding thermodynamical framework is briefly described as well. MDPI 2019-07-15 /pmc/articles/PMC7515208/ /pubmed/33267410 http://dx.doi.org/10.3390/e21070696 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Tsallis, Constantino
Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title_full Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title_fullStr Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title_full_unstemmed Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title_short Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
title_sort beyond boltzmann–gibbs–shannon in physics and elsewhere
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515208/
https://www.ncbi.nlm.nih.gov/pubmed/33267410
http://dx.doi.org/10.3390/e21070696
work_keys_str_mv AT tsallisconstantino beyondboltzmanngibbsshannoninphysicsandelsewhere