Cargando…

Quantum Features of Macroscopic Fields: Entropy and Dynamics

Macroscopic fields such as electromagnetic, magnetohydrodynamic, acoustic or gravitational waves are usually described by classical wave equations with possible additional damping terms and coherent sources. The aim of this paper is to develop a complete macroscopic formalism including random/therma...

Descripción completa

Detalles Bibliográficos
Autor principal: Alicki, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515220/
https://www.ncbi.nlm.nih.gov/pubmed/33267419
http://dx.doi.org/10.3390/e21070705
Descripción
Sumario:Macroscopic fields such as electromagnetic, magnetohydrodynamic, acoustic or gravitational waves are usually described by classical wave equations with possible additional damping terms and coherent sources. The aim of this paper is to develop a complete macroscopic formalism including random/thermal sources, dissipation and random scattering of waves by environment. The proposed reduced state of the field combines averaged field with the two-point correlation function called single-particle density matrix. The evolution equation for the reduced state of the field is obtained by reduction of the generalized quasi-free dynamical semigroups describing irreversible evolution of bosonic quantum field and the definition of entropy for the reduced state of the field follows from the von Neumann entropy of quantum field states. The presented formalism can be applied, for example, to superradiance phenomena and allows unifying the Mueller and Jones calculi in polarization optics.