Cargando…
Electricity Consumption Forecasting using Support Vector Regression with the Mixture Maximum Correntropy Criterion
The electricity consumption forecasting (ECF) technology plays a crucial role in the electricity market. The support vector regression (SVR) is a nonlinear prediction model that can be used for ECF. The electricity consumption (EC) data are usually nonlinear and non-Gaussian and present outliers. Th...
Autores principales: | Duan, Jiandong, Tian, Xuan, Ma, Wentao, Qiu, Xinyu, Wang, Peng, An, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515222/ https://www.ncbi.nlm.nih.gov/pubmed/33267421 http://dx.doi.org/10.3390/e21070707 |
Ejemplares similares
-
Electricity Consumption Forecasting Scheme via Improved LSSVM with Maximum Correntropy Criterion
por: Duan, Jiandong, et al.
Publicado: (2018) -
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
por: Ma, Wentao, et al.
Publicado: (2018) -
Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
por: Qi, Yu, et al.
Publicado: (2014) -
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020) -
Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion
por: Wang, Baobin, et al.
Publicado: (2019)