Cargando…

Empirical Estimation of Information Measures: A Literature Guide

We give a brief survey of the literature on the empirical estimation of entropy, differential entropy, relative entropy, mutual information and related information measures. While those quantities are of central importance in information theory, universal algorithms for their estimation are increasi...

Descripción completa

Detalles Bibliográficos
Autor principal: Verdú, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515235/
https://www.ncbi.nlm.nih.gov/pubmed/33267434
http://dx.doi.org/10.3390/e21080720
Descripción
Sumario:We give a brief survey of the literature on the empirical estimation of entropy, differential entropy, relative entropy, mutual information and related information measures. While those quantities are of central importance in information theory, universal algorithms for their estimation are increasingly important in data science, machine learning, biology, neuroscience, economics, language, and other experimental sciences.