Cargando…
Universal Target Learning: An Efficient and Effective Technique for Semi-Naive Bayesian Learning
To mitigate the negative effect of classification bias caused by overfitting, semi-naive Bayesian techniques seek to mine the implicit dependency relationships in unlabeled testing instances. By redefining some criteria from information theory, Target Learning (TL) proposes to build for each unlabel...
Autores principales: | Gao, Siqi, Lou, Hua, Wang, Limin, Liu, Yang, Fan, Tiehu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515258/ https://www.ncbi.nlm.nih.gov/pubmed/33267443 http://dx.doi.org/10.3390/e21080729 |
Ejemplares similares
-
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
por: Liu, Yang, et al.
Publicado: (2018) -
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
por: Zhang, Yao, et al.
Publicado: (2019) -
Approximation methods for efficient learning of Bayesian networks
por: Riggelsen, C
Publicado: (2008) -
Structure Learning of Bayesian Network Based on Adaptive Thresholding
por: Zhang, Yang, et al.
Publicado: (2019) -
BNFinder: exact and efficient method for learning Bayesian networks
por: Wilczyński, Bartek, et al.
Publicado: (2009)