Cargando…

Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques

A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Medrano Sandonas, Leonardo, Gutierrez, Rafael, Pecchia, Alessandro, Croy, Alexander, Cuniberti, Gianaurelio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515264/
https://www.ncbi.nlm.nih.gov/pubmed/33267449
http://dx.doi.org/10.3390/e21080735
_version_ 1783586777023381504
author Medrano Sandonas, Leonardo
Gutierrez, Rafael
Pecchia, Alessandro
Croy, Alexander
Cuniberti, Gianaurelio
author_facet Medrano Sandonas, Leonardo
Gutierrez, Rafael
Pecchia, Alessandro
Croy, Alexander
Cuniberti, Gianaurelio
author_sort Medrano Sandonas, Leonardo
collection PubMed
description A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected applications of the PHONON tool to the description of phonon transport in nanostructured materials. The PHONON tool is a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform. We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials, helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the versatility of our implementation of phonon transport in combination with density functional-based methods to address specific nanoscale functionalities, thus potentially allowing for designing novel thermal devices.
format Online
Article
Text
id pubmed-7515264
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75152642020-11-09 Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques Medrano Sandonas, Leonardo Gutierrez, Rafael Pecchia, Alessandro Croy, Alexander Cuniberti, Gianaurelio Entropy (Basel) Review A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected applications of the PHONON tool to the description of phonon transport in nanostructured materials. The PHONON tool is a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform. We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials, helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the versatility of our implementation of phonon transport in combination with density functional-based methods to address specific nanoscale functionalities, thus potentially allowing for designing novel thermal devices. MDPI 2019-07-27 /pmc/articles/PMC7515264/ /pubmed/33267449 http://dx.doi.org/10.3390/e21080735 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Medrano Sandonas, Leonardo
Gutierrez, Rafael
Pecchia, Alessandro
Croy, Alexander
Cuniberti, Gianaurelio
Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title_full Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title_fullStr Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title_full_unstemmed Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title_short Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
title_sort quantum phonon transport in nanomaterials: combining atomistic with non-equilibrium green’s function techniques
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515264/
https://www.ncbi.nlm.nih.gov/pubmed/33267449
http://dx.doi.org/10.3390/e21080735
work_keys_str_mv AT medranosandonasleonardo quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques
AT gutierrezrafael quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques
AT pecchiaalessandro quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques
AT croyalexander quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques
AT cunibertigianaurelio quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques