Cargando…
Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our rec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515264/ https://www.ncbi.nlm.nih.gov/pubmed/33267449 http://dx.doi.org/10.3390/e21080735 |
_version_ | 1783586777023381504 |
---|---|
author | Medrano Sandonas, Leonardo Gutierrez, Rafael Pecchia, Alessandro Croy, Alexander Cuniberti, Gianaurelio |
author_facet | Medrano Sandonas, Leonardo Gutierrez, Rafael Pecchia, Alessandro Croy, Alexander Cuniberti, Gianaurelio |
author_sort | Medrano Sandonas, Leonardo |
collection | PubMed |
description | A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected applications of the PHONON tool to the description of phonon transport in nanostructured materials. The PHONON tool is a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform. We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials, helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the versatility of our implementation of phonon transport in combination with density functional-based methods to address specific nanoscale functionalities, thus potentially allowing for designing novel thermal devices. |
format | Online Article Text |
id | pubmed-7515264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75152642020-11-09 Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques Medrano Sandonas, Leonardo Gutierrez, Rafael Pecchia, Alessandro Croy, Alexander Cuniberti, Gianaurelio Entropy (Basel) Review A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected applications of the PHONON tool to the description of phonon transport in nanostructured materials. The PHONON tool is a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform. We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials, helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the versatility of our implementation of phonon transport in combination with density functional-based methods to address specific nanoscale functionalities, thus potentially allowing for designing novel thermal devices. MDPI 2019-07-27 /pmc/articles/PMC7515264/ /pubmed/33267449 http://dx.doi.org/10.3390/e21080735 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Medrano Sandonas, Leonardo Gutierrez, Rafael Pecchia, Alessandro Croy, Alexander Cuniberti, Gianaurelio Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title | Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title_full | Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title_fullStr | Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title_full_unstemmed | Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title_short | Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques |
title_sort | quantum phonon transport in nanomaterials: combining atomistic with non-equilibrium green’s function techniques |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515264/ https://www.ncbi.nlm.nih.gov/pubmed/33267449 http://dx.doi.org/10.3390/e21080735 |
work_keys_str_mv | AT medranosandonasleonardo quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques AT gutierrezrafael quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques AT pecchiaalessandro quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques AT croyalexander quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques AT cunibertigianaurelio quantumphonontransportinnanomaterialscombiningatomisticwithnonequilibriumgreensfunctiontechniques |