Cargando…
A General Framework for Fair Regression
Fairness, through its many forms and definitions, has become an important issue facing the machine learning community. In this work, we consider how to incorporate group fairness constraints into kernel regression methods, applicable to Gaussian processes, support vector machines, neural network reg...
Autores principales: | Fitzsimons, Jack, Al Ali, AbdulRahman, Osborne, Michael, Roberts, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515270/ https://www.ncbi.nlm.nih.gov/pubmed/33267455 http://dx.doi.org/10.3390/e21080741 |
Ejemplares similares
-
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
Fair regression for health care spending
por: Zink, Anna, et al.
Publicado: (2020) -
A framework for FAIR robotic datasets
por: Motta, Corrado, et al.
Publicado: (2023) -
FAIRSCAPE: a Framework for FAIR and Reproducible Biomedical Analytics
por: Levinson, Maxwell Adam, et al.
Publicado: (2021) -
ALFA: The new ALICE-FAIR software framework
por: Al-Turany, M, et al.
Publicado: (2015)