Cargando…
Gaussian Mean Field Regularizes by Limiting Learned Information
Variational inference with a factorized Gaussian posterior estimate is a widely-used approach for learning parameters and hidden variables. Empirically, a regularizing effect can be observed that is poorly understood. In this work, we show how mean field inference improves generalization by limiting...
Autores principales: | Kunze, Julius, Kirsch, Louis, Ritter, Hippolyt, Barber, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515287/ https://www.ncbi.nlm.nih.gov/pubmed/33267472 http://dx.doi.org/10.3390/e21080758 |
Ejemplares similares
-
Regularity theory for mean-field game systems
por: Gomes, Diogo A, et al.
Publicado: (2016) -
Lasso regularization for left-censored Gaussian outcome and high-dimensional predictors
por: Soret, Perrine, et al.
Publicado: (2018) -
Gaussian and non-Gaussian linear time series and random fields
por: Rosenblatt, Murray
Publicado: (2000) -
Elliptic regularization and partial regularity for motion by mean curvature
por: Ilmanen, Tom
Publicado: (2014) -
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
por: Liu, Zhenqiu
Publicado: (2021)