Cargando…
Beta Distribution-Based Cross-Entropy for Feature Selection
Analysis of high-dimensional data is a challenge in machine learning and data mining. Feature selection plays an important role in dealing with high-dimensional data for improvement of predictive accuracy, as well as better interpretation of the data. Frequently used evaluation functions for feature...
Autores principales: | Dai, Weixing, Guo, Dianjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515297/ https://www.ncbi.nlm.nih.gov/pubmed/33267482 http://dx.doi.org/10.3390/e21080769 |
Ejemplares similares
-
A Ligand-Based Virtual Screening Method Using Direct Quantification of Generalization Ability
por: Dai, Weixing, et al.
Publicado: (2019) -
Fusing Feature Distribution Entropy with R-MAC Features in Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2019) -
An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification
por: Khan, M. Attique, et al.
Publicado: (2018) -
Feature Selection with Neighborhood Entropy-Based Cooperative Game Theory
por: Zeng, Kai, et al.
Publicado: (2014) -
Intrinsic entropy model for feature selection of scRNA-seq data
por: Li, Lin, et al.
Publicado: (2022)