Cargando…
Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction
Kernel adaptive filtering (KAF) is an effective nonlinear learning algorithm, which has been widely used in time series prediction. The traditional KAF is based on the stochastic gradient descent (SGD) method, which has slow convergence speed and low filtering accuracy. Hence, a kernel conjugate gra...
Autores principales: | Xue, Nan, Luo, Xiong, Gao, Yang, Wang, Weiping, Wang, Long, Huang, Chao, Zhao, Wenbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515314/ https://www.ncbi.nlm.nih.gov/pubmed/33267498 http://dx.doi.org/10.3390/e21080785 |
Ejemplares similares
-
Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion
por: Wang, Baobin, et al.
Publicado: (2019) -
Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
por: Huang, Hongliang, et al.
Publicado: (2022) -
Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme
por: Xu, Yang, et al.
Publicado: (2017) -
A robust maximum correntropy forecasting model for time series with outliers
por: Ren, Jing, et al.
Publicado: (2023) -
Performance Assessment of Non-Gaussian Control Systems Based on Mixture Correntropy
por: Zhang, Jinfang, et al.
Publicado: (2019)