Cargando…
Spectral Embedded Deep Clustering
We propose a new clustering method based on a deep neural network. Given an unlabeled dataset and the number of clusters, our method directly groups the dataset into the given number of clusters in the original space. We use a conditional discrete probability distribution defined by a deep neural ne...
Autores principales: | Wada, Yuichiro, Miyamoto, Shugo, Nakagama, Takumi, Andéol, Léo, Kumagai, Wataru, Kanamori, Takafumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515324/ https://www.ncbi.nlm.nih.gov/pubmed/33267508 http://dx.doi.org/10.3390/e21080795 |
Ejemplares similares
-
Deep audio embeddings for vocalisation clustering
por: Best, Paul, et al.
Publicado: (2023) -
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
por: van Dam, Alje, et al.
Publicado: (2021) -
Generative hypergraph models and spectral embedding
por: Gong, Xue, et al.
Publicado: (2023) -
A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation
por: Huang, Wenna, et al.
Publicado: (2021) -
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020)