Cargando…
Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization
Particle swarm optimization (PSO) is a search algorithm inspired by the collective behavior of flocking birds and fishes. This algorithm is widely adopted for solving optimization problems involving one objective. The evaluation of the PSO progress is usually measured by the fitness of the best part...
Autores principales: | Pires, E. J. Solteiro, Machado, J. A. Tenreiro, Oliveira, P. B. de Moura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515356/ http://dx.doi.org/10.3390/e21090827 |
Ejemplares similares
-
Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems
por: Yu, Xiang, et al.
Publicado: (2017) -
Multiobjective Particle Swarm Optimization Based on Cosine Distance Mechanism and Game Strategy
por: Li, Nana, et al.
Publicado: (2021) -
A Dynamic Model for Imputing Missing Medical Data: A Multiobjective Particle Swarm Optimization Algorithm
por: Almasinejad, Peyman, et al.
Publicado: (2021) -
Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization
por: Cheng, Xianfu, et al.
Publicado: (2014) -
Multilevel Multiobjective Particle Swarm Optimization Guided Superpixel Algorithm for Histopathology Image Detection and Segmentation
por: Kanadath, Anusree, et al.
Publicado: (2023)