Cargando…
Interpretation of Entropy Algorithms in the Context of Biomedical Signal Analysis and Their Application to EEG Analysis in Epilepsy
Biomedical signals are measurable time series that describe a physiological state of a biological system. Entropy algorithms have been previously used to quantify the complexity of biomedical signals, but there is a need to understand the relationship of entropy to signal processing concepts. In thi...
Autores principales: | Amarantidis, Lampros Chrysovalantis, Abásolo, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515369/ http://dx.doi.org/10.3390/e21090840 |
Ejemplares similares
-
Multiscale Permutation Lempel–Ziv Complexity Measure for Biomedical Signal Analysis: Interpretation and Application to Focal EEG Signals
por: Borowska, Marta
Publicado: (2021) -
A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction
por: Pinto, Mauro. F., et al.
Publicado: (2021) -
EEG Signal Processing for Biomedical Applications
por: Tran, Yvonne
Publicado: (2022) -
Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the Method Superior to Sample Entropy?
por: Simons, Samantha, et al.
Publicado: (2018) -
Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal
por: Namazi, Hamidreza, et al.
Publicado: (2016)