Cargando…
Information Theoretic Multi-Target Feature Selection via Output Space Quantization †
A key challenge in information theoretic feature selection is to estimate mutual information expressions that capture three desirable terms—the relevancy of a feature with the output, the redundancy and the complementarity between groups of features. The challenge becomes more pronounced in multi-ta...
Autores principales: | Sechidis, Konstantinos, Spyromitros-Xioufis, Eleftherios, Vlahavas, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515384/ http://dx.doi.org/10.3390/e21090855 |
Ejemplares similares
-
Simple strategies for semi-supervised feature selection
por: Sechidis, Konstantinos, et al.
Publicado: (2017) -
Distinguishing prognostic and predictive biomarkers: an information theoretic approach
por: Sechidis, Konstantinos, et al.
Publicado: (2018) -
Distinguishing prognostic and predictive biomarkers: an information theoretic approach
por: Sechidis, Konstantinos, et al.
Publicado: (2018) -
Geometry and quantization of moduli spaces
por: Consul, Luis, et al.
Publicado: (2016) -
BFV quantization on hermitian symmetric spaces
por: Fradkin, E S, et al.
Publicado: (1994)