Cargando…
MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition
Partial information decomposition (PID) separates the contributions of sources about a target into unique, redundant, and synergistic components of information. In essence, PID answers the question of “who knows what” of a system of random variables and hence has applications to a wide spectrum of f...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515392/ http://dx.doi.org/10.3390/e21090862 |
_version_ | 1783586807079763968 |
---|---|
author | Makkeh, Abdullah Chicharro, Daniel Theis, Dirk Oliver Vicente, Raul |
author_facet | Makkeh, Abdullah Chicharro, Daniel Theis, Dirk Oliver Vicente, Raul |
author_sort | Makkeh, Abdullah |
collection | PubMed |
description | Partial information decomposition (PID) separates the contributions of sources about a target into unique, redundant, and synergistic components of information. In essence, PID answers the question of “who knows what” of a system of random variables and hence has applications to a wide spectrum of fields ranging from social to biological sciences. The paper presents MaxEnt3D_Pid, an algorithm that computes the PID of three sources, based on a recently-proposed maximum entropy measure, using convex optimization (cone programming). We describe the algorithm and its associated software utilization and report the results of various experiments assessing its accuracy. Moreover, the paper shows that a hierarchy of bivariate and trivariate PID allows obtaining the finer quantities of the trivariate partial information measure. |
format | Online Article Text |
id | pubmed-7515392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75153922020-11-09 MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition Makkeh, Abdullah Chicharro, Daniel Theis, Dirk Oliver Vicente, Raul Entropy (Basel) Article Partial information decomposition (PID) separates the contributions of sources about a target into unique, redundant, and synergistic components of information. In essence, PID answers the question of “who knows what” of a system of random variables and hence has applications to a wide spectrum of fields ranging from social to biological sciences. The paper presents MaxEnt3D_Pid, an algorithm that computes the PID of three sources, based on a recently-proposed maximum entropy measure, using convex optimization (cone programming). We describe the algorithm and its associated software utilization and report the results of various experiments assessing its accuracy. Moreover, the paper shows that a hierarchy of bivariate and trivariate PID allows obtaining the finer quantities of the trivariate partial information measure. MDPI 2019-09-03 /pmc/articles/PMC7515392/ http://dx.doi.org/10.3390/e21090862 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Makkeh, Abdullah Chicharro, Daniel Theis, Dirk Oliver Vicente, Raul MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title | MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title_full | MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title_fullStr | MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title_full_unstemmed | MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title_short | MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition |
title_sort | maxent3d_pid: an estimator for the maximum-entropy trivariate partial information decomposition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515392/ http://dx.doi.org/10.3390/e21090862 |
work_keys_str_mv | AT makkehabdullah maxent3dpidanestimatorforthemaximumentropytrivariatepartialinformationdecomposition AT chicharrodaniel maxent3dpidanestimatorforthemaximumentropytrivariatepartialinformationdecomposition AT theisdirkoliver maxent3dpidanestimatorforthemaximumentropytrivariatepartialinformationdecomposition AT vicenteraul maxent3dpidanestimatorforthemaximumentropytrivariatepartialinformationdecomposition |