Cargando…
The Poincaré-Shannon Machine: Statistical Physics and Machine Learning Aspects of Information Cohomology
Previous works established that entropy is characterized uniquely as the first cohomology class in a topos and described some of its applications to the unsupervised classification of gene expression modules or cell types. These studies raised important questions regarding the statistical meaning of...
Autor principal: | Baudot, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515411/ http://dx.doi.org/10.3390/e21090881 |
Ejemplares similares
-
Cohomological invariants in Galois cohomology
por: Garibaldi, Skip, et al.
Publicado: (2003) -
Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
por: Barbaresco, Frédéric, et al.
Publicado: (2020) -
Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties
por: Guha, Rajarshi, et al.
Publicado: (2023) -
Cohomological aspects in complex non-Kähler geometry
por: Angella, Daniele
Publicado: (2014) -
Biological Physics : Poincaré seminar
por: Rivasseau, Vincent
Publicado: (2011)