Cargando…
Evidential Decision Tree Based on Belief Entropy
Decision Tree is widely applied in many areas, such as classification and recognition. Traditional information entropy and Pearson’s correlation coefficient are often applied as measures of splitting rules to find the best splitting attribute. However, these methods can not handle uncertainty, since...
Autores principales: | Li, Mujin, Xu, Honghui, Deng, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515420/ http://dx.doi.org/10.3390/e21090897 |
Ejemplares similares
-
Belief Entropy Tree and Random Forest: Learning from Data with Continuous Attributes and Evidential Labels
por: Gao, Kangkai, et al.
Publicado: (2022) -
An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy
por: Liu, Zeyi, et al.
Publicado: (2019) -
Bayesian Smoothing of Decision Tree Soft Predictions and Evidential Evaluation
por: Sutton-Charani, Nicolas
Publicado: (2020) -
Compact Belief Rule Base Learning for Classification with Evidential Clustering †
por: Jiao, Lianmeng, et al.
Publicado: (2019) -
Landslides behavior spatial modeling by using evidential belief function model, Promethean II model, and index of entropy in Tabriz, Iran
por: Beheshti, Ziba, et al.
Publicado: (2021)