Cargando…

A Generic Model for Quantum Measurements

In previous articles, we presented a derivation of Born’s rule and unitary transforms in Quantum Mechanics (QM), from a simple set of axioms built upon a physical phenomenology of quantization—physically, the structure of QM results of an interplay between the quantized number of “modalities” access...

Descripción completa

Detalles Bibliográficos
Autores principales: Auffèves, Alexia, Grangier, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515433/
http://dx.doi.org/10.3390/e21090904
Descripción
Sumario:In previous articles, we presented a derivation of Born’s rule and unitary transforms in Quantum Mechanics (QM), from a simple set of axioms built upon a physical phenomenology of quantization—physically, the structure of QM results of an interplay between the quantized number of “modalities” accessible to a quantum system, and the continuum of “contexts” required to define these modalities. In the present article, we provide a unified picture of quantum measurements within our approach, and justify further the role of the system–context dichotomy, and of quantum interferences. We also discuss links with stochastic quantum thermodynamics, and with algebraic quantum theory.