Cargando…
A Hierarchical Gamma Mixture Model-Based Method for Classification of High-Dimensional Data
Data classification is an important research topic in the field of data mining. With the rapid development in social media sites and IoT devices, data have grown tremendously in volume and complexity, which has resulted in a lot of large and complex high-dimensional data. Classifying such high-dimen...
Autores principales: | Azhar, Muhammad, Li, Mark Junjie, Zhexue Huang, Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515435/ http://dx.doi.org/10.3390/e21090906 |
Ejemplares similares
-
Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data
por: Nguyen, Thanh-Tung, et al.
Publicado: (2015) -
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests
por: Nguyen, Thanh-Tung, et al.
Publicado: (2015) -
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models
por: Yu, Kezi, et al.
Publicado: (2017) -
Multilook SAR Image Segmentation with an Unknown Number of Clusters Using a Gamma Mixture Model and Hierarchical Clustering
por: Zhao, Quanhua, et al.
Publicado: (2017) -
A Beta-mixture model for dimensionality reduction, sample classification and analysis
por: Laurila, Kirsti, et al.
Publicado: (2011)