Cargando…

Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains

The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in...

Descripción completa

Detalles Bibliográficos
Autores principales: Codding, Sara J., Johnson, Ashley A., Trudeau, Matthew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515569/
https://www.ncbi.nlm.nih.gov/pubmed/32924766
http://dx.doi.org/10.1080/19336950.2020.1816107
Descripción
Sumario:The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in the C-terminal region. The intracellular PAS domains and CNBHDs interact directly and regulate some of the characteristic gating properties of each type of KCNH channel. The PAS-CNBHD interaction regulates slow closing (deactivation) of hERG channels, the kinetics of activation and pre-pulse dependent population of closed states (the Cole-Moore shift) in EAG channels and voltage-dependent potentiation in ELK channels. KCNH channels are all regulated by an intrinsic ligand motif in the C-terminal region which binds to the CNBHD. Here, we focus on some recent advances regarding the PAS-CNBHD interaction and the intrinsic ligand.