Cargando…
A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors
Determining the drug-target residence time (RT) is of major interest in drug discovery given that this kinetic parameter often represents a better indicator of in vivo drug efficacy than binding affinity. However, obtaining drug-target unbinding rates poses significant challenges, both computational...
Autores principales: | Lamim Ribeiro, João Marcelo, Provasi, Davide, Filizola, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515652/ https://www.ncbi.nlm.nih.gov/pubmed/33003748 http://dx.doi.org/10.1063/5.0019100 |
Ejemplares similares
-
An efficient strategy to estimate thermodynamics and kinetics of G
protein-coupled receptor activation using metadynamics and maximum caliber
por: Meral, Derya, et al.
Publicado: (2018) -
Insights From Molecular Dynamics Simulations of a Number of G-Protein Coupled Receptor Targets for the Treatment of Pain and Opioid Use Disorders
por: Ribeiro, João Marcelo Lamim, et al.
Publicado: (2019) -
Metadynamics simulations leveraged by statistical analyses and artificial intelligence-based tools to inform the discovery of G protein-coupled receptor ligands
por: Salas-Estrada, Leslie, et al.
Publicado: (2022) -
Assessing the Relative Stability of Dimer Interfaces in G Protein-Coupled Receptors
por: Johnston, Jennifer M., et al.
Publicado: (2012) -
Structure-Kinetics Relationships of Opioids from Metadynamics and Machine Learning
por: Mahinthichaichan, Paween, et al.
Publicado: (2023)