Cargando…
Robust partitioning of microRNA targets from downstream regulatory changes
The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. H...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515711/ https://www.ncbi.nlm.nih.gov/pubmed/32821933 http://dx.doi.org/10.1093/nar/gkaa687 |
_version_ | 1783586858463133696 |
---|---|
author | Patel, Ravi K West, Jessica D Jiang, Ya Fogarty, Elizabeth A Grimson, Andrew |
author_facet | Patel, Ravi K West, Jessica D Jiang, Ya Fogarty, Elizabeth A Grimson, Andrew |
author_sort | Patel, Ravi K |
collection | PubMed |
description | The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. Here, we present an experimental and computational framework to deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a miRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from downstream changes, while greatly reducing false positives. We validate our approach using Argonaute eCLIP-seq and ribosome profiling, demonstrating that CARP defines a comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of target sites within the open reading frame. Additionally, we show that CARP facilitates the dissection of complex changes in gene regulatory networks triggered by miRNAs and identification of transcription factors that mediate downstream regulatory changes. Given the robustness of the approach, CARP would be particularly suitable for dissecting miRNA regulatory networks in vivo. |
format | Online Article Text |
id | pubmed-7515711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-75157112020-09-30 Robust partitioning of microRNA targets from downstream regulatory changes Patel, Ravi K West, Jessica D Jiang, Ya Fogarty, Elizabeth A Grimson, Andrew Nucleic Acids Res Genomics The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. Here, we present an experimental and computational framework to deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a miRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from downstream changes, while greatly reducing false positives. We validate our approach using Argonaute eCLIP-seq and ribosome profiling, demonstrating that CARP defines a comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of target sites within the open reading frame. Additionally, we show that CARP facilitates the dissection of complex changes in gene regulatory networks triggered by miRNAs and identification of transcription factors that mediate downstream regulatory changes. Given the robustness of the approach, CARP would be particularly suitable for dissecting miRNA regulatory networks in vivo. Oxford University Press 2020-08-21 /pmc/articles/PMC7515711/ /pubmed/32821933 http://dx.doi.org/10.1093/nar/gkaa687 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genomics Patel, Ravi K West, Jessica D Jiang, Ya Fogarty, Elizabeth A Grimson, Andrew Robust partitioning of microRNA targets from downstream regulatory changes |
title | Robust partitioning of microRNA targets from downstream regulatory changes |
title_full | Robust partitioning of microRNA targets from downstream regulatory changes |
title_fullStr | Robust partitioning of microRNA targets from downstream regulatory changes |
title_full_unstemmed | Robust partitioning of microRNA targets from downstream regulatory changes |
title_short | Robust partitioning of microRNA targets from downstream regulatory changes |
title_sort | robust partitioning of microrna targets from downstream regulatory changes |
topic | Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515711/ https://www.ncbi.nlm.nih.gov/pubmed/32821933 http://dx.doi.org/10.1093/nar/gkaa687 |
work_keys_str_mv | AT patelravik robustpartitioningofmicrornatargetsfromdownstreamregulatorychanges AT westjessicad robustpartitioningofmicrornatargetsfromdownstreamregulatorychanges AT jiangya robustpartitioningofmicrornatargetsfromdownstreamregulatorychanges AT fogartyelizabetha robustpartitioningofmicrornatargetsfromdownstreamregulatorychanges AT grimsonandrew robustpartitioningofmicrornatargetsfromdownstreamregulatorychanges |