Cargando…

MFSD7C switches mitochondrial ATP synthesis to thermogenesis in response to heme

ATP synthesis and thermogenesis are two critical outputs of mitochondrial respiration. How these outputs are regulated to balance the cellular requirement for energy and heat is largely unknown. Here we show that major facilitator superfamily domain containing 7C (MFSD7C) uncouples mitochondrial res...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yingzhong, Ivica, Nikola A., Dong, Ting, Papageorgiou, Dimitrios P., He, Yanpu, Brown, Douglas R., Kleyman, Marianna, Hu, Guangan, Chen, Walter W., Sullivan, Lucas B., Del Rosario, Amanda, Hammond, Paula T., Vander Heiden, Matthew G., Chen, Jianzhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515921/
https://www.ncbi.nlm.nih.gov/pubmed/32973183
http://dx.doi.org/10.1038/s41467-020-18607-1
Descripción
Sumario:ATP synthesis and thermogenesis are two critical outputs of mitochondrial respiration. How these outputs are regulated to balance the cellular requirement for energy and heat is largely unknown. Here we show that major facilitator superfamily domain containing 7C (MFSD7C) uncouples mitochondrial respiration to switch ATP synthesis to thermogenesis in response to heme. When heme levels are low, MSFD7C promotes ATP synthesis by interacting with components of the electron transport chain (ETC) complexes III, IV, and V, and destabilizing sarcoendoplasmic reticulum Ca(2+)-ATPase 2b (SERCA2b). Upon heme binding to the N-terminal domain, MFSD7C dissociates from ETC components and SERCA2b, resulting in SERCA2b stabilization and thermogenesis. The heme-regulated switch between ATP synthesis and thermogenesis enables cells to match outputs of mitochondrial respiration to their metabolic state and nutrient supply, and represents a cell intrinsic mechanism to regulate mitochondrial energy metabolism.