Cargando…

Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR

Far-red photons regulate shade avoidance responses and can have powerful effects on plant morphology and radiation capture. Recent studies have shown that far-red photons (700 to 750 nm) efficiently drive photosynthesis when added to traditionally defined photosynthetic photons (400–700 nm). But the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhen, Shuyang, Bugbee, Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516038/
https://www.ncbi.nlm.nih.gov/pubmed/33014004
http://dx.doi.org/10.3389/fpls.2020.581156
_version_ 1783586925092798464
author Zhen, Shuyang
Bugbee, Bruce
author_facet Zhen, Shuyang
Bugbee, Bruce
author_sort Zhen, Shuyang
collection PubMed
description Far-red photons regulate shade avoidance responses and can have powerful effects on plant morphology and radiation capture. Recent studies have shown that far-red photons (700 to 750 nm) efficiently drive photosynthesis when added to traditionally defined photosynthetic photons (400–700 nm). But the long-term effects of far-red photons on canopy quantum yield have not yet been determined. We grew lettuce in a four-chamber, steady-state canopy gas-exchange system to separately quantify canopy photon capture, quantum yield for CO(2) fixation, and carbon use efficiency. These measurements facilitate a mechanistic understanding of the effect of far-red photons on the components of plant growth. Day-time photosynthesis and night-time respiration of lettuce canopies were continuously monitored from seedling to harvest in five replicate studies. Plants were grown under a background of either red/blue or white light, each background with or without 15% (50 μmol m(−2) s(−1)) of far-red photons substituting for photons between 400 and 700 nm. All four treatments contained 31.5% blue photons, and an equal total photon flux from 400 to 750 nm of 350 μmol m(−2) s(−1). Both treatments with far-red photons had higher canopy photon capture, increased daily carbon gain (net photosynthesis minus respiration at night), and 29 to 31% more biomass than control treatments. Canopy quantum yield was similar among treatments (0.057 ± 0.002 mol of CO(2) fixed in gross photosynthesis per mole of absorbed photons integrated over 400 to 750 nm). Carbon use efficiency (daily carbon gain/gross photosynthesis) was also similar for mature plants (0.61 ± 0.02). Photosynthesis increased linearly with increasing photon capture and had a common slope among all four treatments, which demonstrates that the faster growth with far-red photon substitution was caused by enhanced photon capture through increased leaf expansion. The equivalent canopy quantum yield among treatments indicates that the absorbed far-red photons were equally efficient for photosynthesis when acting synergistically with the 400–700 nm photons.
format Online
Article
Text
id pubmed-7516038
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-75160382020-10-02 Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR Zhen, Shuyang Bugbee, Bruce Front Plant Sci Plant Science Far-red photons regulate shade avoidance responses and can have powerful effects on plant morphology and radiation capture. Recent studies have shown that far-red photons (700 to 750 nm) efficiently drive photosynthesis when added to traditionally defined photosynthetic photons (400–700 nm). But the long-term effects of far-red photons on canopy quantum yield have not yet been determined. We grew lettuce in a four-chamber, steady-state canopy gas-exchange system to separately quantify canopy photon capture, quantum yield for CO(2) fixation, and carbon use efficiency. These measurements facilitate a mechanistic understanding of the effect of far-red photons on the components of plant growth. Day-time photosynthesis and night-time respiration of lettuce canopies were continuously monitored from seedling to harvest in five replicate studies. Plants were grown under a background of either red/blue or white light, each background with or without 15% (50 μmol m(−2) s(−1)) of far-red photons substituting for photons between 400 and 700 nm. All four treatments contained 31.5% blue photons, and an equal total photon flux from 400 to 750 nm of 350 μmol m(−2) s(−1). Both treatments with far-red photons had higher canopy photon capture, increased daily carbon gain (net photosynthesis minus respiration at night), and 29 to 31% more biomass than control treatments. Canopy quantum yield was similar among treatments (0.057 ± 0.002 mol of CO(2) fixed in gross photosynthesis per mole of absorbed photons integrated over 400 to 750 nm). Carbon use efficiency (daily carbon gain/gross photosynthesis) was also similar for mature plants (0.61 ± 0.02). Photosynthesis increased linearly with increasing photon capture and had a common slope among all four treatments, which demonstrates that the faster growth with far-red photon substitution was caused by enhanced photon capture through increased leaf expansion. The equivalent canopy quantum yield among treatments indicates that the absorbed far-red photons were equally efficient for photosynthesis when acting synergistically with the 400–700 nm photons. Frontiers Media S.A. 2020-09-11 /pmc/articles/PMC7516038/ /pubmed/33014004 http://dx.doi.org/10.3389/fpls.2020.581156 Text en Copyright © 2020 Zhen and Bugbee http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Zhen, Shuyang
Bugbee, Bruce
Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title_full Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title_fullStr Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title_full_unstemmed Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title_short Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO(2) Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
title_sort substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for co(2) fixation and increased photon capture during long-term studies: implications for re-defining par
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516038/
https://www.ncbi.nlm.nih.gov/pubmed/33014004
http://dx.doi.org/10.3389/fpls.2020.581156
work_keys_str_mv AT zhenshuyang substitutingfarredfortraditionallydefinedphotosyntheticphotonsresultsinequalcanopyquantumyieldforco2fixationandincreasedphotoncaptureduringlongtermstudiesimplicationsforredefiningpar
AT bugbeebruce substitutingfarredfortraditionallydefinedphotosyntheticphotonsresultsinequalcanopyquantumyieldforco2fixationandincreasedphotoncaptureduringlongtermstudiesimplicationsforredefiningpar