Cargando…

Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system

This research paper assessed the performance of R600a with the base lubricant and Multi-walled Carbon Nanotube (MWCNT) nanolubricant at steady state. It describes the instruments required for measurement of the data parameter and its uncertainties, steps involved in preparing and replacing the MWCNT...

Descripción completa

Detalles Bibliográficos
Autores principales: Babarinde, T.O., Akinlabi, S.A., Madyira, D.M., Ekundayo, F.M., Adedeji, P.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516065/
https://www.ncbi.nlm.nih.gov/pubmed/32995404
http://dx.doi.org/10.1016/j.dib.2020.106316
_version_ 1783586931193413632
author Babarinde, T.O.
Akinlabi, S.A.
Madyira, D.M.
Ekundayo, F.M.
Adedeji, P.A.
author_facet Babarinde, T.O.
Akinlabi, S.A.
Madyira, D.M.
Ekundayo, F.M.
Adedeji, P.A.
author_sort Babarinde, T.O.
collection PubMed
description This research paper assessed the performance of R600a with the base lubricant and Multi-walled Carbon Nanotube (MWCNT) nanolubricant at steady state. It describes the instruments required for measurement of the data parameter and its uncertainties, steps involved in preparing and replacing the MWCNT nanolubricant concentration with base lubricant in vapour compression refrigeration. The system's temperature data was collected at the components inlets and outlets. Pressure data was also registered at the compressor outlet and inlet. The data was captured at 27 °C ambient temperature at an interval of 30 min for 300 min. The experiment includes the experimental data collection, Adaptive Neuro-Fuzzy Inference System (ANFIS) training and testing dataset. The use of ANFIS model is explained in predicting the efficiency of MWCNT nanolubricant in a vapour compression refrigerator system. The ANFIS model also provides statistical output measures such as Root Mean Square Error (RMSE) and Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and determination coefficient (R(2)). The data is useful and important for replacing MWCNT nanolubricant with base lubricant in a vapour compression refrigeration system for researchers in the specialisation of energy-efficient materials in refrigeration. The data present can be reused for vapour compression refrigeration systems simulation and modelling.
format Online
Article
Text
id pubmed-7516065
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-75160652020-09-28 Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system Babarinde, T.O. Akinlabi, S.A. Madyira, D.M. Ekundayo, F.M. Adedeji, P.A. Data Brief Data Article This research paper assessed the performance of R600a with the base lubricant and Multi-walled Carbon Nanotube (MWCNT) nanolubricant at steady state. It describes the instruments required for measurement of the data parameter and its uncertainties, steps involved in preparing and replacing the MWCNT nanolubricant concentration with base lubricant in vapour compression refrigeration. The system's temperature data was collected at the components inlets and outlets. Pressure data was also registered at the compressor outlet and inlet. The data was captured at 27 °C ambient temperature at an interval of 30 min for 300 min. The experiment includes the experimental data collection, Adaptive Neuro-Fuzzy Inference System (ANFIS) training and testing dataset. The use of ANFIS model is explained in predicting the efficiency of MWCNT nanolubricant in a vapour compression refrigerator system. The ANFIS model also provides statistical output measures such as Root Mean Square Error (RMSE) and Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and determination coefficient (R(2)). The data is useful and important for replacing MWCNT nanolubricant with base lubricant in a vapour compression refrigeration system for researchers in the specialisation of energy-efficient materials in refrigeration. The data present can be reused for vapour compression refrigeration systems simulation and modelling. Elsevier 2020-09-14 /pmc/articles/PMC7516065/ /pubmed/32995404 http://dx.doi.org/10.1016/j.dib.2020.106316 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Babarinde, T.O.
Akinlabi, S.A.
Madyira, D.M.
Ekundayo, F.M.
Adedeji, P.A.
Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title_full Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title_fullStr Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title_full_unstemmed Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title_short Dataset of experimental and adaptive neuro-fuzzy inference system (ANFIS) model prediction of R600a/MWCNT nanolubricant in a vapour compression system
title_sort dataset of experimental and adaptive neuro-fuzzy inference system (anfis) model prediction of r600a/mwcnt nanolubricant in a vapour compression system
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516065/
https://www.ncbi.nlm.nih.gov/pubmed/32995404
http://dx.doi.org/10.1016/j.dib.2020.106316
work_keys_str_mv AT babarindeto datasetofexperimentalandadaptiveneurofuzzyinferencesystemanfismodelpredictionofr600amwcntnanolubricantinavapourcompressionsystem
AT akinlabisa datasetofexperimentalandadaptiveneurofuzzyinferencesystemanfismodelpredictionofr600amwcntnanolubricantinavapourcompressionsystem
AT madyiradm datasetofexperimentalandadaptiveneurofuzzyinferencesystemanfismodelpredictionofr600amwcntnanolubricantinavapourcompressionsystem
AT ekundayofm datasetofexperimentalandadaptiveneurofuzzyinferencesystemanfismodelpredictionofr600amwcntnanolubricantinavapourcompressionsystem
AT adedejipa datasetofexperimentalandadaptiveneurofuzzyinferencesystemanfismodelpredictionofr600amwcntnanolubricantinavapourcompressionsystem