Cargando…
Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas
BACKGROUND: The grading and pathologic biomarkers of glioma has important guiding significance for the individual treatment. In clinical, it is often necessary to obtain tumor samples through invasive operation for pathological diagnosis. The present study aimed to use conventional machine learning...
Autores principales: | Gao, Min, Huang, Siying, Pan, Xuequn, Liao, Xuan, Yang, Ru, Liu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516282/ https://www.ncbi.nlm.nih.gov/pubmed/33014836 http://dx.doi.org/10.3389/fonc.2020.01676 |
Ejemplares similares
-
Application of Radiomics Analysis Based on CT Combined With Machine Learning in Diagnostic of Pancreatic Neuroendocrine Tumors Patient’s Pathological Grades
por: Zhang, Tao, et al.
Publicado: (2021) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023) -
Multiparametric MRI Features Predict the SYP Gene Expression in Low-Grade Glioma Patients: A Machine Learning-Based Radiomics Analysis
por: Xiao, Zheng, et al.
Publicado: (2021) -
Radiomics Features Predict CIC Mutation Status in Lower Grade Glioma
por: Zhang, Luyuan, et al.
Publicado: (2020) -
Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach
por: Fang, Shengyu, et al.
Publicado: (2021)