Cargando…
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
This paper is a step towards developing a geometric understanding of a popular algorithm for training deep neural networks named stochastic gradient descent (SGD). We built upon a recent result which observed that the noise in SGD while training typical networks is highly non-isotropic. That motivat...
Autores principales: | Fioresi, Rita, Chaudhari, Pratik, Soatto, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516401/ https://www.ncbi.nlm.nih.gov/pubmed/33285876 http://dx.doi.org/10.3390/e22010101 |
Ejemplares similares
-
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent
por: Wang, Yuanfeng, et al.
Publicado: (2010) -
Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios
por: Fazakas-Anca, Iosif Sorin, et al.
Publicado: (2021) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023) -
Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System
por: Vo, Nam D., et al.
Publicado: (2020)