Cargando…
Probabilistic Ensemble of Deep Information Networks
We describe a classifier made of an ensemble of decision trees, designed using information theory concepts. In contrast to algorithms C4.5 or ID3, the tree is built from the leaves instead of the root. Each tree is made of nodes trained independently of the others, to minimize a local cost function...
Autores principales: | Franzese, Giulio, Visintin, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516404/ https://www.ncbi.nlm.nih.gov/pubmed/33285874 http://dx.doi.org/10.3390/e22010100 |
Ejemplares similares
-
Probabilistic Models with Deep Neural Networks
por: Masegosa, Andrés R., et al.
Publicado: (2021) -
Additive Ensemble Neural Network with Constrained Weighted Quantile Loss for Probabilistic Electric-Load Forecasting
por: Lopez-Martin, Manuel, et al.
Publicado: (2021) -
Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
por: Abu Sammour, Denis, et al.
Publicado: (2023) -
An algebraic and probabilistic framework for network information theory
por: Pradhan, S Sandeep, et al.
Publicado: (2020) -
Deep Neural Network Probabilistic Decoder for Stabilizer Codes
por: Krastanov, Stefan, et al.
Publicado: (2017)