Cargando…
Low-Complexity Rate-Distortion Optimization of Sampling Rate and Bit-Depth for Compressed Sensing of Images
Compressed sensing (CS) offers a framework for image acquisition, which has excellent potential in image sampling and compression applications due to the sub-Nyquist sampling rate and low complexity. In engineering practices, the resulting CS samples are quantized by finite bits for transmission. In...
Autores principales: | Chen, Qunlin, Chen, Derong, Gong, Jiulu, Ruan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516434/ https://www.ncbi.nlm.nih.gov/pubmed/33285900 http://dx.doi.org/10.3390/e22010125 |
Ejemplares similares
-
A General Rate-Distortion Optimization Method for Block Compressed Sensing of Images
por: Chen, Qunlin, et al.
Publicado: (2021) -
Low-Complexity Adaptive Sampling of Block Compressed Sensing Based on Distortion Minimization
por: Chen, Qunlin, et al.
Publicado: (2022) -
CNN-Based Suppression of False Contour and Color Distortion in Bit-Depth Enhancement †
por: Peng, Changmeng, et al.
Publicado: (2021) -
Rate-Distortion Performance and Incremental Transmission Scheme of Compressive Sensed Measurements in Wireless Sensor Networks
por: da Rocha Henriques, Felipe, et al.
Publicado: (2019) -
A Rate-Distortion-Based Merging Algorithm for Compressed Image Segmentation
por: Juang, Ying-Shen, et al.
Publicado: (2012)