Cargando…

An Adaptive Multi-Target Radar Waveform Design Based on PWS Algorithm

Due to the uncertainty of radar target prior information in actual scenes, waveform design based on radar target prior information cannot meet the requirements of detection performance and parameter estimation. Aiming at the problem of waveform design for detecting multi-target in the presence of cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Bin, Li, Shumin, Wang, Xishi, Li, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516453/
https://www.ncbi.nlm.nih.gov/pubmed/33285806
http://dx.doi.org/10.3390/e22010031
Descripción
Sumario:Due to the uncertainty of radar target prior information in actual scenes, waveform design based on radar target prior information cannot meet the requirements of detection performance and parameter estimation. Aiming at the problem of waveform design for detecting multi-target in the presence of clutter, a linear probability-weighted summation (PWS) algorithm based on multi-target impulse response is proposed and includes the radar waveform design based on mutual information (MI) and signal-to-interference ratio (SINR) criteria. In view of the traditional water-filling algorithm, the problem of multi-target is further investigated in a new way to improve the overall performance of the system. The method makes a lot of deductions by using Jensen’s inequality, to determine the algorithm objective function and energy constraint. The simulation results show that the proposed algorithm has better detection performance and more accurate target information.