Cargando…

Solidification Morphology and Bifurcation Predictions with the Maximum Entropy Production Rate Model

The use of the principle of maximum entropy generation per unit volume is a new approach in materials science that has implications for understanding the morphological evolution during solid–liquid interface growth, including bifurcations with or without diffuseness. A review based on a pre-publicat...

Descripción completa

Detalles Bibliográficos
Autores principales: Delali Bensah, Yaw, Sekhar, J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516463/
https://www.ncbi.nlm.nih.gov/pubmed/33285815
http://dx.doi.org/10.3390/e22010040
Descripción
Sumario:The use of the principle of maximum entropy generation per unit volume is a new approach in materials science that has implications for understanding the morphological evolution during solid–liquid interface growth, including bifurcations with or without diffuseness. A review based on a pre-publication arXiv preprint is first presented. A detailed comparison with experimental observations indicates that the Maximum Entropy Production Rate-density model (MEPR) can correctly predict bifurcations for dilute alloys during solidification. The model predicts a critical diffuseness of the interface at which a plane-front or any other form of diffuse interface will become unstable. A further confidence test for the model is offered in this article by comparing the predicted liquid diffusion coefficients to those obtained experimentally. A comparison of the experimentally determined solute diffusion constant in dilute binary Pb–Sn alloys with those predicted by the various solidification instability models (1953–2011) is additionally discussed. A good predictability is noted for the MEPR model when the interface diffuseness is small. In comparison, the more traditional interface break-down models have low predictiveness.