Cargando…
Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data
Biomedical signals constitute time-series that sustain machine learning techniques to achieve classification. These signals are complex with measurements of several features over, eventually, an extended period. Characterizing whether the data can anticipate prediction is an essential task in time-s...
Autores principales: | Lemus, Mariano, Beirão, João P., Paunković, Nikola, Carvalho, Alexandra M., Mateus, Paulo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516479/ https://www.ncbi.nlm.nih.gov/pubmed/33285824 http://dx.doi.org/10.3390/e22010049 |
Ejemplares similares
-
Quantum Contract Signing with Entangled Pairs
por: Yadav, Preeti, et al.
Publicado: (2019) -
Characterization of Pathogen Airborne Inoculum Density by Information Theoretic Analysis of Spore Trap Time Series Data
por: Choudhury, Robin A., et al.
Publicado: (2020) -
Simple Stopping Criteria for Information Theoretic Feature Selection
por: Yu, Shujian, et al.
Publicado: (2019) -
Quantifying the Multiscale Predictability of Financial Time Series by an Information-Theoretic Approach
por: Zhao, Xiaojun, et al.
Publicado: (2019) -
An Empirical Comparison of Information-Theoretic Criteria in Estimating the Number of Independent Components of fMRI Data
por: Hui, Mingqi, et al.
Publicado: (2011)