Cargando…
Estimation of Dynamic Networks for High-Dimensional Nonstationary Time Series
This paper is concerned with the estimation of time-varying networks for high-dimensional nonstationary time series. Two types of dynamic behaviors are considered: structural breaks (i.e., abrupt change points) and smooth changes. To simultaneously handle these two types of time-varying features, a...
Autores principales: | Xu, Mengyu, Chen, Xiaohui, Wu, Wei Biao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516486/ https://www.ncbi.nlm.nih.gov/pubmed/33285830 http://dx.doi.org/10.3390/e22010055 |
Ejemplares similares
-
Broad Echo State Network with Reservoir Pruning for Nonstationary Time Series Prediction
por: Liu, Wenjie, et al.
Publicado: (2022) -
Bayesian Model Search for Nonstationary Periodic Time Series
por: Hadj-Amar, Beniamino, et al.
Publicado: (2019) -
Impulse Response Functions for Nonlinear, Nonstationary, and Heterogeneous Systems, Estimated by Deconvolution and Demixing of Noisy Time Series
por: Kirchner, James W.
Publicado: (2022) -
Nonstationary time series forecasting using optimized-EVDHM-ARIMA for COVID-19
por: Nagvanshi, Suraj Singh, et al.
Publicado: (2023) -
Quantitative Estimation of the Nonstationary Behavior of Neural Spontaneous Activity
por: Destro-Filho, João-Batista, et al.
Publicado: (2010)