Cargando…
Multi-Domain Entropy-Random Forest Method for the Fusion Diagnosis of Inter-Shaft Bearing Faults with Acoustic Emission Signals
Inter-shaft bearing as a key component of turbomachinery is a major source of catastrophic accidents. Due to the requirement of high sampling frequency and high sensitivity to impact signals, AE (Acoustic Emission) signals are widely applied to monitor and diagnose inter-shaft bearing faults. With r...
Autores principales: | Tian, Jing, Liu, Lili, Zhang, Fengling, Ai, Yanting, Wang, Rui, Fei, Chengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516487/ https://www.ncbi.nlm.nih.gov/pubmed/33285832 http://dx.doi.org/10.3390/e22010057 |
Ejemplares similares
-
Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission
por: Gao, Zheyu, et al.
Publicado: (2017) -
Fault Diagnosis of Rolling Element Bearings with a Two-Step Scheme Based on Permutation Entropy and Random Forests
por: Xue, Xiaoming, et al.
Publicado: (2019) -
Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
por: Ma, Jianpeng, et al.
Publicado: (2021) -
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings
por: Guo, Jing, et al.
Publicado: (2022)