Cargando…
Does Geometric Algebra Provide a Loophole to Bell’s Theorem?
In 2007, and in a series of later papers, Joy Christian claimed to refute Bell’s theorem, presenting an alleged local realistic model of the singlet correlations using techniques from geometric algebra (GA). Several authors published papers refuting his claims, and Christian’s ideas did not gain acc...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516493/ https://www.ncbi.nlm.nih.gov/pubmed/33285836 http://dx.doi.org/10.3390/e22010061 |
_version_ | 1783587014367510528 |
---|---|
author | Gill, Richard David |
author_facet | Gill, Richard David |
author_sort | Gill, Richard David |
collection | PubMed |
description | In 2007, and in a series of later papers, Joy Christian claimed to refute Bell’s theorem, presenting an alleged local realistic model of the singlet correlations using techniques from geometric algebra (GA). Several authors published papers refuting his claims, and Christian’s ideas did not gain acceptance. However, he recently succeeded in publishing yet more ambitious and complex versions of his theory in fairly mainstream journals. How could this be? The mathematics and logic of Bell’s theorem is simple and transparent and has been intensely studied and debated for over 50 years. Christian claims to have a mathematical counterexample to a purely mathematical theorem. Each new version of Christian’s model used new devices to circumvent Bell’s theorem or depended on a new way to misunderstand Bell’s work. These devices and misinterpretations are in common use by other Bell critics, so it useful to identify and name them. I hope that this paper can serve as a useful resource to those who need to evaluate new “disproofs of Bell’s theorem”. Christian’s fundamental idea is simple and quite original: he gives a probabilistic interpretation of the fundamental GA equation [Formula: see text]. After that, ambiguous notation and technical complexity allows sign errors to be hidden from sight, and new mathematical errors can be introduced. |
format | Online Article Text |
id | pubmed-7516493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75164932020-11-09 Does Geometric Algebra Provide a Loophole to Bell’s Theorem? Gill, Richard David Entropy (Basel) Discussion In 2007, and in a series of later papers, Joy Christian claimed to refute Bell’s theorem, presenting an alleged local realistic model of the singlet correlations using techniques from geometric algebra (GA). Several authors published papers refuting his claims, and Christian’s ideas did not gain acceptance. However, he recently succeeded in publishing yet more ambitious and complex versions of his theory in fairly mainstream journals. How could this be? The mathematics and logic of Bell’s theorem is simple and transparent and has been intensely studied and debated for over 50 years. Christian claims to have a mathematical counterexample to a purely mathematical theorem. Each new version of Christian’s model used new devices to circumvent Bell’s theorem or depended on a new way to misunderstand Bell’s work. These devices and misinterpretations are in common use by other Bell critics, so it useful to identify and name them. I hope that this paper can serve as a useful resource to those who need to evaluate new “disproofs of Bell’s theorem”. Christian’s fundamental idea is simple and quite original: he gives a probabilistic interpretation of the fundamental GA equation [Formula: see text]. After that, ambiguous notation and technical complexity allows sign errors to be hidden from sight, and new mathematical errors can be introduced. MDPI 2019-12-31 /pmc/articles/PMC7516493/ /pubmed/33285836 http://dx.doi.org/10.3390/e22010061 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Discussion Gill, Richard David Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title | Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title_full | Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title_fullStr | Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title_full_unstemmed | Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title_short | Does Geometric Algebra Provide a Loophole to Bell’s Theorem? |
title_sort | does geometric algebra provide a loophole to bell’s theorem? |
topic | Discussion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516493/ https://www.ncbi.nlm.nih.gov/pubmed/33285836 http://dx.doi.org/10.3390/e22010061 |
work_keys_str_mv | AT gillricharddavid doesgeometricalgebraprovidealoopholetobellstheorem |