Cargando…

Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model

We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperpara...

Descripción completa

Detalles Bibliográficos
Autores principales: Graziadei, Helton, Lijoi, Antonio, Lopes, Hedibert F., Marques F., Paulo C., Prünster, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516501/
https://www.ncbi.nlm.nih.gov/pubmed/33285844
http://dx.doi.org/10.3390/e22010069
_version_ 1783587016269627392
author Graziadei, Helton
Lijoi, Antonio
Lopes, Hedibert F.
Marques F., Paulo C.
Prünster, Igor
author_facet Graziadei, Helton
Lijoi, Antonio
Lopes, Hedibert F.
Marques F., Paulo C.
Prünster, Igor
author_sort Graziadei, Helton
collection PubMed
description We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR(p) model.
format Online
Article
Text
id pubmed-7516501
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75165012020-11-09 Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model Graziadei, Helton Lijoi, Antonio Lopes, Hedibert F. Marques F., Paulo C. Prünster, Igor Entropy (Basel) Article We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR(p) model. MDPI 2020-01-06 /pmc/articles/PMC7516501/ /pubmed/33285844 http://dx.doi.org/10.3390/e22010069 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Graziadei, Helton
Lijoi, Antonio
Lopes, Hedibert F.
Marques F., Paulo C.
Prünster, Igor
Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title_full Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title_fullStr Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title_full_unstemmed Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title_short Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model
title_sort prior sensitivity analysis in a semi-parametric integer-valued time series model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516501/
https://www.ncbi.nlm.nih.gov/pubmed/33285844
http://dx.doi.org/10.3390/e22010069
work_keys_str_mv AT graziadeihelton priorsensitivityanalysisinasemiparametricintegervaluedtimeseriesmodel
AT lijoiantonio priorsensitivityanalysisinasemiparametricintegervaluedtimeseriesmodel
AT lopeshedibertf priorsensitivityanalysisinasemiparametricintegervaluedtimeseriesmodel
AT marquesfpauloc priorsensitivityanalysisinasemiparametricintegervaluedtimeseriesmodel
AT prunsterigor priorsensitivityanalysisinasemiparametricintegervaluedtimeseriesmodel