Cargando…
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
Decoding motor imagery (MI) electroencephalogram (EEG) signals for brain-computer interfaces (BCIs) is a challenging task because of the severe non-stationarity of perceptual decision processes. Recently, deep learning techniques have had great success in EEG decoding because of their prominent abil...
Autores principales: | Tang, Xingliang, Zhang, Xianrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516530/ https://www.ncbi.nlm.nih.gov/pubmed/33285871 http://dx.doi.org/10.3390/e22010096 |
Ejemplares similares
-
Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals
por: Tayeb, Zied, et al.
Publicado: (2019) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018) -
Data augmentation strategies for EEG-based motor imagery decoding
por: George, Olawunmi, et al.
Publicado: (2022) -
A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
por: Liu, Tianjun, et al.
Publicado: (2021) -
Decoding of Motor Coordination Imagery Involving the Lower Limbs by the EEG-Based Brain Network
por: Fu, Yunfa, et al.
Publicado: (2021)