Cargando…

Identical Quantum Particles, Entanglement, and Individuality

Particles in classical physics are distinguishable objects, which can be picked out individually on the basis of their unique physical properties. By contrast, in the philosophy of physics, the standard view is that particles of the same kind (“identical particles”) are completely indistinguishable...

Descripción completa

Detalles Bibliográficos
Autor principal: Dieks, Dennis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516542/
https://www.ncbi.nlm.nih.gov/pubmed/33285909
http://dx.doi.org/10.3390/e22020134
Descripción
Sumario:Particles in classical physics are distinguishable objects, which can be picked out individually on the basis of their unique physical properties. By contrast, in the philosophy of physics, the standard view is that particles of the same kind (“identical particles”) are completely indistinguishable from each other and lack identity. This standard view is problematic: Particle indistinguishability is irreconcilable not only with the very meaning of “particle” in ordinary language and in classical physical theory, but also with how this term is actually used in the practice of present-day physics. Moreover, the indistinguishability doctrine prevents a smooth transition from quantum particles to what we normally understand by “particles” in the classical limit of quantum mechanics. Elaborating on earlier work, we here analyze the premises of the standard view and discuss an alternative that avoids these and similar problems. As it turns out, this alternative approach connects to recent discussions in quantum information theory.