Cargando…
Quantifying Total Influence between Variables with Information Theoretic and Machine Learning Techniques
The increasingly sophisticated investigations of complex systems require more robust estimates of the correlations between the measured quantities. The traditional Pearson correlation coefficient is easy to calculate but sensitive only to linear correlations. The total influence between quantities i...
Autores principales: | Murari, Andrea, Rossi, Riccardo, Lungaroni, Michele, Gaudio, Pasquale, Gelfusa, Michela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516551/ https://www.ncbi.nlm.nih.gov/pubmed/33285916 http://dx.doi.org/10.3390/e22020141 |
Ejemplares similares
-
On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals
por: Murari, Andrea, et al.
Publicado: (2018) -
Upgrading Model Selection Criteria with Goodness of Fit Tests for Practical Applications
por: Rossi, Riccardo, et al.
Publicado: (2020) -
A Model Falsification Approach to Learning in Non-Stationary Environments for Experimental Design
por: Murari, Andrea, et al.
Publicado: (2019) -
Effects of environmental conditions on COVID-19 morbidity as an example of multicausality: a multi-city case study in Italy
por: Murari, Andrea, et al.
Publicado: (2023) -
Data driven theory for knowledge discovery in the exact sciences with applications to thermonuclear fusion
por: Murari, A., et al.
Publicado: (2020)