Cargando…
Selection Consistency of Lasso-Based Procedures for Misspecified High-Dimensional Binary Model and Random Regressors
We consider selection of random predictors for a high-dimensional regression problem with a binary response for a general loss function. An important special case is when the binary model is semi-parametric and the response function is misspecified under a parametric model fit. When the true respons...
Autores principales: | Kubkowski, Mariusz, Mielniczuk, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516565/ https://www.ncbi.nlm.nih.gov/pubmed/33285928 http://dx.doi.org/10.3390/e22020153 |
Ejemplares similares
-
Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification
por: Furmańczyk, Konrad, et al.
Publicado: (2020) -
Distributions of a General Reduced-Order Dependence Measure and Conditional Independence Testing
por: Kubkowski, Mariusz, et al.
Publicado: (2020) -
Statistical finite elements for misspecified models
por: Duffin, Connor, et al.
Publicado: (2021) -
Avoiding inferior clusterings with misspecified Gaussian mixture models
por: Kasa, Siva Rajesh, et al.
Publicado: (2023) -
Orthogonalization of Regressors in fMRI Models
por: Mumford, Jeanette A., et al.
Publicado: (2015)